Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury.
نویسندگان
چکیده
Ceruloplasmin is a ferroxidase that oxidizes toxic ferrous iron to its nontoxic ferric form. We have previously reported that a glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed in the mammalian CNS. To better understand the role of ceruloplasmin in iron homeostasis in the CNS, we generated a ceruloplasmin gene-deficient (Cp(-/-)) mouse. Adult Cp(-/-) mice showed increased iron deposition in several regions of the CNS such as the cerebellum and brainstem. Increased lipid peroxidation was also seen in some CNS regions. Cerebellar cells from neonatal Cp(-/-) mice were also more susceptible to oxidative stress in vitro. Cp(-/-) mice showed deficits in motor coordination that were associated with a loss of brainstem dopaminergic neurons. These results indicate that ceruloplasmin plays an important role in maintaining iron homeostasis in the CNS and in protecting the CNS from iron-mediated free radical injury. Therefore, the antioxidant effects of ceruloplasmin could have important implications for various neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease in which iron deposition is known to occur.
منابع مشابه
Development of a Method for measuring Reactive Oxygen Radicals Levels In Vitro and Study the Effects of Vitamin C and E on Radical Production Reaction
Background: Free radicals and reactive oxygen species(ROS) are the most important factors in formation of oxidative stress reaction. Now, radical damage has been suggested to contribute to a wide variety of diseases such as Alzheimer, atherosclerosis and cancer. Transition metal ions in the presence of the various biomolecules produce these active compounds. The aim of this study is introducing...
متن کاملIron efflux from oligodendrocytes is differentially regulated in gray and white matter.
Accumulation of iron occurs in the CNS in several neurodegenerative diseases. Iron is essential for life but also has the ability to generate toxic free radicals if not properly handled. Iron homeostasis at the cellular level is therefore important to maintain proper cellular function, and its dysregulation can contribute to neurodegenerative diseases. Iron export, a key mechanism to maintain p...
متن کاملTHE DISTURBANCES IN IRON TRANSPORT AND STORES AND TOTAL FREE RADICAL TRAPPING ABILITY OF BLOOD PLASMA IN BABIES WITH MITOCHONDRIAL ENCEPHALO MYOPATHIES
Babies with mitochondrial encephalomyopathies had higher ferritin levels than controls. Although plasma iron levels were simi lar in both groups, babies with mitochondrial encephalomyopathies had lower transferrin levels. Thiobarbituric acid reactive substances in plasma of babies with mitochondrial encephalomyopathies were higher thun in controls suggesting increased lipid oxidation. We s...
متن کاملCeruloplasmin expression by human peripheral blood lymphocytes: a new link between immunity and iron metabolism.
Ceruloplasmin (CP) is a multicopper oxidase involved in the acute phase reaction to stress. Although the physiological role of CP is uncertain, its role in iron (Fe) homeostasis and protection against free radical-initiated cell injury has been widely documented. Previous studies showed the existence of two molecular isoforms of CP: secreted CP (sCP) and a membrane glycosylphosphatidylinositol ...
متن کاملCeruloplasmin protects injured spinal cord from iron-mediated oxidative damage.
CNS injury-induced hemorrhage and tissue damage leads to excess iron, which can cause secondary degeneration. The mechanisms that handle this excess iron are not fully understood. We report that spinal cord contusion injury (SCI) in mice induces an "iron homeostatic response" that partially limits iron-catalyzed oxidative damage. We show that ceruloplasmin (Cp), a ferroxidase that oxidizes toxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 15 شماره
صفحات -
تاریخ انتشار 2002